Политех в Сети

Сайт для Учебы

7.1. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ НЕЛИНЕЙНЫМИ ЦЕПЯМИ

Рейтинг пользователей: / 4
ХудшийЛучший 

В нелинейных электрических цепях связь между входным сигналом UВх.(T) и выходным сигналом UВых.(T) описывается нелинейной функциональной зависимостью

. (7.2)

Такую функциональную зависимость можно рассматривать как математическую модель нелинейной цепи.

Обычно нелинейная электрическая цепь представляет совокупность линейных и нелинейных двухполюсников. Для описания свойств нелинейных двухполюсников часто пользуются их вольтамперными характеристиками (ВАХ). Как правило, ВАХ нелинейных элементов получают экспериментально. В результате эксперимента ВАХ нелинейного элемента получают в виде таблицы. Этот способ описания пригоден для анализа нелинейных цепей с помощью ЭВМ.

Для изучения процессов в цепях, содержащих нелинейные элементы, необходимо отобразить ВАХ в математической форме, удобной для расчетов. Для использования аналитических методов анализа требуется подобрать аппроксимирующую функцию, достаточно точно отражающую особенности экспериментально снятой характеристики. Чаще всего используются следующие способы аппроксимации ВАХ нелинейных двухполюсников.

Показательная аппроксимация. Из теории работы p-n перехода следует, что вольт-амперная характеристика полупроводникового диода при u>0 описывается выражением

. (7.3)

Показательную зависимость часто используют при изучении нелинейных цепей, содержащих полупроводниковые приборы. Аппроксимация вполне точна при значениях тока, не превышающих несколько миллиампер. При больших токах экспоненциальная характеристика плавно переходит в прямую линию из-за влияния объемного сопротивления полупроводникового материала.

Степенная аппроксимация. Этот способ основан на разложении нелинейной вольтамперной характеристики в ряд Тейлора, сходящийся в окрестности рабочей точки U0:

(7.4)

Здесь коэффициенты …. – некоторые числа, которые можно найти из полученной экспериментально вольтамперной характеристики. Количество членов разложения зависит от требуемой точности расчетов.

Пользоваться степенной аппроксимацией при больших амплитудах сигналов нецелесообразно из-за существенного ухудшения точности.

Кусочно-линейная аппроксимация Применяется в случаях, когда в схеме действуют большие сигналы. Способ основан на приближенной замене реальной характеристики отрезками прямых линий с различными наклонами. Например, передаточная характеристика реального транзистора может быть аппроксимирована тремя отрезками прямых, как показано на рис.7.1.

описание: пр25

Рис.7.1.Передаточная характеристика биполярного транзистора

Аппроксимация определяется тремя параметрами: напряжением начала характеристики , крутизной , имеющей размерность проводимости и напряжением насыщения , при котором возрастание тока прекращается. Математическая запись аппроксимированной характеристики такова:

(7.5)

Во всех случаях ставится задача нахождения спектрального состава тока, обусловленного воздействием на нелинейную цепь гармонических напряжений. При кусочно-линейной аппроксимации схемы анализируют методом угла отсечки.

Рассмотрим для примера работу нелинейной цепи при больших сигналах. В качестве нелинейного элемента используем биполярный транзистор, работающий с отсечкой коллекторного тока. Для этого при помощи начального напряжения смещения ЕСм рабочая точка устанавливается таким образом, чтобы транзистор работал с отсечкой коллекторного тока, и одновременно подадим на базу входной гармонический сигнал.

описание: пр26

Рис.7.2.Иллюстрация отсечки тока при больших сигналах

Угол отсечки θ – половина той части периода, в течение которой коллекторный ток не равен нулю, или, другими словами, часть периода от момента достижения коллекторным током максимума до момента, когда ток становится равным нулю – «отсекается».

В соответствии с обозначениями на рис.7.2 коллекторный ток для I > 0 описывается выражением

. (7.6)

Разложение этого выражения в ряд Фурье позволяет найти постоянную составляющую I0 и амплитуды всех гармоник коллекторного тока. Частоты гармоник кратны частоте входного сигнала, а относительные амплитуды гармоник зависят от угла отсечки. Анализ показывает, что для каждого номера гармоники существует оптимальный угол отсечки θ, При котором ее амплитуда максимальна:

. (7.7)

описание: пр27

Рис.7.8. Схема умножения частоты

Подобные схемы (рис.7.8) часто применяются для умножения частоты гармонического сигнала в целое число раз. Настройкой колебательного контура, включенного в коллекторную цепь транзистора, можно выделить нужную гармонику исходного сигнала. Угол отсечки устанавливается, исходя из максимального значения амплитуды заданной гармоники. Относительная амплитуда гармоники уменьшается с ростом ее номера. Поэтому описанный метод применим при коэффициентах умножения N ≤ 4. Применяя многократное умножение частоты, можно на основе одного высокостабильного генератора гармонических колебаний получить набор частот с такой же относительной нестабильностью частоты, как у основного генератора. Все эти частоты кратны частоте входного сигнала.

Свойство нелинейной цепи обогащать спектр, создавая на выходе спектральные составляющие, первоначально отсутствовавшие на входе, ярче всего проявляются, если входной сигнал представляет собой сумму нескольких гармонических сигналов с различными частотами. Рассмотрим случай воздействия на нелинейную цепь суммы двух гармонических колебаний. Вольтамперную характеристику цепи представим многочленом 2-й степени:

. (7.8)

Входное напряжение помимо постоянной составляющей содержит два гармонических колебания с частотами и , амплитуды которых равны и соответственно:

. (7.9)

Такой сигнал называется бигармоническим. Подставив этот сигнал в формулу (7.8), выполнив преобразования и сгруппировав члены, получим спектральное представление тока в нелинейном двухполюснике:

(7.10)

Видно, что в спектре тока присутствуют слагаемые, входящие в спектр входного сигнала, вторые гармоники обоих источников входного сигнала а также гармонические составляющие с частотами ω1 - ω2 и ω1 + ω2. Если степенное разложение вольтамперной характеристики представлено многочленом 3-й степени, спектр тока будет содержать также частоты . В общем случае при воздействии на нелинейную цепь нескольких гармонических сигналов с разными частотами в спектре тока появляются комбинационные частоты

, (7.11)

Где – любые целые числа, положительные и отрицательные, включая нуль.

Возникновение комбинационных составляющих в спектре выходного сигнала при нелинейном преобразовании обусловливает ряд важных эффектов, с которыми приходится сталкиваться при построении радиоэлектронных устройств и систем. Так, если один из двух входных сигналов промодулирован по амплитуде, то происходит перенос модуляции с одной несущей частоты на другую. Иногда за счет нелинейного взаимодействия наблюдается усиление или подавление одного сигнала другим.

На основе нелинейных цепей осуществляется детектирование (демодуляция) амплитудно-модулированных (АМ) сигналов в радиоприемниках. Схема амплитудного детектора и принцип его работы поясняются на рис.7.9.

описание: пр29 описание: пр28

Рис.7.9. Схема амплитудного детектора и форма выходного тока

Нелинейный элемент, вольтамперная характеристика которого аппроксимирована ломаной линией, пропускает только одну (в данном случае положительную) полуволну входного тока. Эта полуволна создает на резисторе импульсы напряжения высокой (несущей) частоты с огибающей, воспроизводящей форму огибающей амплитудно-модулированного сигнала. Спектр напряжения на резисторе содержит частоту несущей , ее гармоники и низкочастотную составляющую, которая примерно вдвое меньше амплитуды импульсов напряжения. Эта составляющая имеет частоту , равную частоте огибающей, т. е. представляет собой продетектированный сигнал. Конденсатор совместно с резистором образует фильтр низких частот. При выполнении условия

(7.12)

В спектре выходного напряжения остается только частота огибающей. При этом также происходит увеличение выходного напряжения за счет того, что при положительной полуволне входного напряжения конденсатор быстро заряжается через малое сопротивление открытого нелинейного элемента почти до амплитудного значения входного напряжения, а при отрицательной полуволне – не успевает разрядиться через большое сопротивление резистора . Приведенное описание работы амплитудного детектора соответствует режиму большого входного сигнала, при котором ВАХ полупроводникового диода аппроксимируется ломаной прямой.

В режиме малого входного сигнала начальный участок ВАХ диода может быть аппроксимирован квадратичной зависимостью. При подаче на такой нелинейный элемент амплитудно-модулированного сигнала, спектр которого содержит несущую и боковые частоты, возникают частоты с суммарной и разностной частотами. Разностная частота представляет собой продетектированный сигнал, а несущая и суммарная частоты не проходят через фильтр низких частот, образованный элементами и .

Обычный прием детектирования частотно-модулированных (ЧМ) колебаний состоит в том, что ЧМ колебание сначала преобразуется в АМ колебание, которое затем детектируется вышеописанным способом. В качестве простейшего преобразователя ЧМ в АМ может служить расстроенный относительно несущей частоты колебательный контур. Принцип преобразования ЧМ сигналов в АМ поясняется на рис.7.10.

описание: пр30

Рис.7.10.Преобразование ЧМ в АМ

При отсутствии модуляции рабочая точка находится на скате резонансной кривой контура. При изменении частоты изменяется амплитуда тока в контуре, т. е. происходит преобразование ЧМ в АМ.

Схема преобразователя ЧМ в АМ показана на рис.7.11.

описание: пр31

Рис.7.11. Преобразователь ЧМ в АМ

Недостатком такого детектора являются искажения продетектированного сигнала, возникающие из-за нелинейности резонансной кривой колебательного контура. Поэтому на практике применяются симметричные схемы, обладающие лучшими характеристиками. Пример такой схемы приведен на рис.7.12.

описание: пр32

Рис.7.12. Детектор ЧМ сигналов

Два контура настраиваются на крайние значения частоты, т. е. на частоты И . Каждый из контуров преобразует ЧМ в АМ, как описано выше. АМ колебания детектируются соответствующими амплитудными детекторами. Низкочастотные напряжения и противоположны по знаку, и с выхода схемы снимается их разность. Характеристика детектора, т. е. зависимость выходного напряжения от частоты, получается путем вычитания двух резонансных кривых и более линейна. Такие детекторы называются дискриминаторами (различителями).