Политех в Сети

Сайт для Учебы

12.3. Второе приближение. Эффекты самовоздействия

Рейтинг пользователей: / 0
ХудшийЛучший 

Для нахождения второго приближения надо использовать вектор в первом приближении, т. е. Если ограничиться только изотропными средами или кристаллами, обладающими центом симметрии, то как было сказано, k2 = 0, и следовательно, в нужном приближении . Взяв в качестве нулевого приближения плоскую волну получим:

. (1)

Слагаемое с тройной частотой w3 = 3w приводит, очевидно, к генерации третьей гармоники. Исходное излучение частотой w создает в нелинейной среде поляризованность, осциллирующую на утроенной частоте 3w Элементарные вторичные волны третьей гармоники, испускаемые разными элементами среды, будут иметь всюду одинаковые фазовые соотношения с возбуждающей их волной поляризованности при совпадении показателей преломления на частотах w и 3w. Дисперсия среды на интервале (w, 3w) еще больше, чем в случае второй гармоники. Это ограничивает выбор кристаллов, в которых возможно выполнение условия пространственного синхронизма N(3w) = N(w), так как двулучепреломление должно быть настолько большим, чтобы поверхности N0(w) = Nl(3w) еще пересекались. Кроме того кубичная восприимчивость имеет малое значение, что вынуждает применять очень интенсивное исходное излучение. Мощное исходное излучение может привести к разрушению кристалла, но, несмотря на это, генерация третьей гармоники наблюдалась еще в 1962 г. группой американских ученых на кристалле исландского шпата при освещении его светом рубинового лазера.

Посмотрим теперь, какие явления связаны с первым слагаемым в выражении (1). Множитель есть исходная падающая волна. В рассматриваемом приближении этот множитель можно заменить . Учитывая, что , формулу (2-е уравнение Максвелла с учетом нелинейной части поляризованности) после этого можно записать так:

. (2)

Отсюда видно, что влияние рассматриваемого слагаемого эквивалентно изменений диэлектрической проницаемости или показателя преломления среды. Учитывая малость поправки к e(w), для показателя преломления в поле интенсивной световой волны можно написать

, , (3)

Где — значение показателя преломления среды в линейной оптике, а N2 = 3k3/8N0 — некоторый коэффициент, зависящий от свойств среды. Этот коэффициент может быть и отрицательным, и положительным. Он особенно велик у нитробензола и имеет для него положительный знак.

Согласно (3), чем больше интенсивность падающей волны, тем большее изменение показателя преломления она вызывает. За счет появления нелинейной добавки к диэлектрической проницаемости показателю преломления световая волна изменяет собственную скорость и коэффициент поглощения в среде, т. е. волна, изменяя характеристики среды, тем самым изменяет условия для своего распространения. Это приводит к эффектам самофокусировки, самодифракции, нелинейному расширению светового пучка и т. д. Такие оптические эффекты принято называть самовоздействием световой волны.

Чтобы представить сущность явления самофокусировки, предположим, что в однородную среду с показателем N0 вступает плоскопараллельный пучок лучей кругового сечения с диаметром (рис. 3). Допустим, что амплитуда пучка постоянна по всему сечению. Показатель преломления в пространстве, занятом пучком, станет равным , причем предположим, что N2 > 0. Из-за дифракции пучок должен расширяться, так что все направления лучей сосредоточатся в пределах конуса с углом при вершине 2qдиф, где qдиф = 1,22l/Dn0, l — длина волны в вакууме. Так как показатель преломления в пространстве, занятом пучком, больше, чем в окружающей среде, то на границе этих сред возможно полное внутреннее отражение, предельный угол скольжения для полного отражения от боковой стенки цилиндра определяется соотношением cos q0 = N0/(N0 ± E02).

Ввиду малости нелинейной поправки к показателю преломления, этот угол будет мал, так что . при разложении функции cos q0 в

Степенной ряд получим . Если qдиф < q0, то часть дифрагированных лучей будет выходить из цилиндра — пучок будет 'расширяться, при обратном соотношении qдиф < q0 все дифрагированные лучи будут испытывать полное отражение от боковой поверхности цилиндра. Это и есть самофокусировка.