Политех в Сети

Сайт для Учебы

§ 1.2. Гипотеза де Бройля. Волновые свойства вещества

Рейтинг пользователей: / 3
ХудшийЛучший 

Из курса оптики известно, что целый ряд оптических явлений удается последовательно описать с волновой точки зрения; примера­ми служат хорошо известные явления интерференции и дифракции света. С другой стороны (сошлемся на рассмотренный в предыдущем параграфе эффект Комптона), свет столь же явно демонстрирует свою корпуску­лярную природу. Этот дуализм "волна-частица" надо рассматривать как экспериментальный факт, и поэтому последовательная теория све­та должна быть корпускулярно-волновой. Разумеется, в каких-то предельных случаях могут оказаться достаточными только волновое или только корпускулярное описания.

Оказывается, и при этом мы вновь сошлемся на эксперимент, что и частицы вещества с ненулевой с массой (к ним относятся, например, электроны, протоны, нейтроны, атомы, молекулы и т. д.) также обнаруживают волновые свойства, так что между ними и фото­нами нет принципиального различия.

В этом пункте при переходе от макро - к микрообъектам возника­ет известная трудность в понимании существа физических явлений. Действительно, на уровне макроявлений корпускулярное и волновое описание четко разграничены. На уровне микроявлений эта граница в значительной степени размывается и движение микрообъекта стано­вится одновременно и волновым, и корпускулярным. Иными словами, более адекватной действительности становится ситуация, при которой микрообъект в какой-то мере похож на корпускулу, в какой-то мере­ на волну, причем эта мера зависит от физических условий наблюдения микрообъекта.

Последовательной теорией, учитывающей эту особенность всех микрочастиц, является квантовая теория. Но прежде чем перейти к изложению ее основных идей, необходимо установить каким образом один и тот же физический объект в принципе может проявлять то корпускулярные, то волновые свойства и какая существует сопостави­мость этих двух различных способов описания.

В оптических явлениях установлен критерий применимости поня­тия луча (т. е. корпускулярной картины) и найдены правила перехода от волновых понятий к корпускулярным. Продолжая рассуждения в этом направлении, можно надеяться! что здесь же лежит переход в обрат­ном направлении: от корпускулярных понятий классической механики к волновым представлениям квантовой механики.

Соответствующие идеи, использующие оптико-механическую анало­гию, были высказаны французским физиком Л. де Бройлем в 1924 г. Де Бройль выдвинул смелую гипотезу о том, что дуализм "волна-час­тица" не является особенностью одних только оптических явлений, но имеет универсальную применимость во всей физике микромира. В своей книге "Революция в физике" он писал: "В оптике в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалось ли в теории материи обратной ошибки? Не думали ли мы слишком много о картине "частиц" и не пре­небрегали ли чрезмерно картиной волн?”

К допущению волновых свойств у материальных частиц его приве­ли также следующие соображения. В конце 20-х годов XIX в. В. Гамильтон обратил внимание на удивительную аналогию между геометри­ческой оптикой и классический (ньютоновской) механикой. Было пока­зано, что основные законы этих столь непохожих на первый взгляд разделов физики представимы в математически тождественной форме. В результате вместо того, чтобы рассматривать движение частицы во внешнем поле с потенциальной энергией , можно изучать рас­пространение светового луча в оптически неоднородной среде с подоб­ранным соответствующим образом показателем преломления . Разумеется, эта эквивалентность описаний допускает и обратный пе­реход.

Отмеченная аналогия распространялась Гамильтоном только на геометрическую оптику и классическую механику. Но, как уже отмеча­лось, геометрическая оптика является приближением более общей вол­новой оптики и не описывает сугубо волновых свойств света. В свою очередь, классическая механика также имеет ограниченную область применимости: она, как известно, не может объяснить существование дискретных уровней энергии в атомных системах.

Идея де Бройля заключалась в том, чтобы расширить аналогию между оптикой и механикой и волновой оптике сопоставить волновую механику, попытавшись применить последнюю к внутриатомным явлениям. "Попытка приписать электрону, и вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми корпускуляр­ными свойствами, связанными между собой квантом действия (постоян­ной Планка ), – такая задача представлялась крайне необхо­димой и плодотворной... Необходимо создать новую механику волново­го характера, которая будет относиться к старой механике как вол­новая оптика к геометрической оптике", – писал де Бройль в книге "Революция в физике".

За открытие волновых свойств вещества Л. де Бройль в 1929 г. был удостоен Нобелевской премии.

Обратимся теперь к формальной стороне вопроса. Пусть мы имеем микрочастицу (например, электрон) с массой M, движущуюся в вакууме с постоянной скоростью . Пользуясь корпускулярным описанием, припишем частице энергию E и импульс в соответствии с формулами (рассмотрим общий случай релятивистской частицы).

. (1.2.1)

С другой стороны, в волновой картине мы используем понятия частоты и длины волны (или волнового числа ). Если оба описания являются различными аспектами одного и того же физическо­го объекта, то между ними должна быть однозначная связь. Следуя де Бройлю, перенесем на случай частиц вещества те же правила пере­хода от одной картины к другой, справедливые в применении к све­ту:

(1.2.2)

Соотношения (1.2.2) получили название Формул де Бройля. Длина волны, связанная с частицей, определяется выражением

(1.2.3)

Ее называют Длиной волны де Бройля. Нетрудно сообразить по аналогии со светом, что именно эта длина волны должна фигурировать в критериях применимости волновой или корпускулярной картин.

Наиболее простым типом волны в вакууме с определенной часто­той и волновым вектором является плоская монохроматическая волна

Поэтому в соответствии с формулами (1.2.2) свяжем с движением час­тицы волну вида

(1.2.4)

Такую волну называют Волной де Бройля. Непростой вопрос о физической природе этой волны и о толковании ее значений отложим на последующие параграфы.

Из определения (1.2.3) получим ряд полезных соотношений, свя­зывающих длину волны де Бройля с параметрами движущейся частицы. Подставив формулу (1.2.1) для импульса частицы P в (1.2.3), полу­чим зависимость от скорости частицы:

(1.2.5)

Выразив с помощью соотношения импульс час­тицы P через ее полную энергию E, найдем, что

(1.2.6)

Обозначим T кинетическую энергию частицы. Воспользовавшись определением , из (1.2.6) получим формулу

(1.2.7)

Выражающую дебройлевскую длину волны частицы через ее кинетичес­кую энергию.

В предельном случае нерелятивистской частицы, когда отноше­ние , из (1.2.6) получим выражение для дебройлевской длины волны в нерелятивистском приближении:

(1.2.8)

Разумеется, выражение (1.2.8) можно было получить непосредственно из формулы (1.2.5) в пределе, когда отношение .