Политех в Сети

Сайт для Учебы

§6. Потенциальность электрического поля

Рейтинг пользователей: / 32
ХудшийЛучший 

Работа в электрическом поле.

Так как сила, действующая в электрическом поле на точечный заряд Q Равна

(6.1)

То при перемещении заряда Q на расстояние Эта сила совершает работу:

(6.2)

При перемещении заряда из точки 1 в точку 2 по траектории работа равна:

(6.3)

Потенциальность кулоновского поля.

Поле, созданное кулоновскими зарядами, потенциально. Поле сил называется потенциальным, если при перемещении в этом поле работа зависит лишь от начального и конечного положения точек (тела) пути и не зависит от формы пути - траектории. Вторым эквивалентным определением потенциальности поля является условие равенства нулю работы при перемещении в нем по любому замкнутому контуру.

Вся математическая часть учения о потенциале была разработана в рамках теории тяготения, а понятие о потенциале возникло в работах Ж. Л. Лагранжа (1736-1813) в 1777г. Выражение “потенциал” было введено в науку в 1828 г. Дж. Грином и независимо К. Ф. Гауссом (1775-1855). Большой вклад в теорию потенциала был внесен П. С. Лапласом (1749-1827) и С. Д. Пуассоном (1781-1840).

На основании принципа суперпозиции из потенциальности поля точечного заряда следует потенциальность произвольного электростатического поля.

Из сказанного следует, что , тогда условие потенциальности электрического поля

(6.4)

(6.4) – интегральная формулировка потенциальности электрического поля.

Дифференциальная формулировка потенциальности поля.

Если воспользоваться формулой Стокса

, то из (6.4) следует дифференциальная формулировка потенциальности поля:

(6.5)

Непосредственной проверкой можно убедиться, что

. (6.6)

Тогда сопоставляя (6.6) и (6.5) можно записать:

, (6.7)

где - некоторая скалярная функция, которая называется потенциалом. Знак «-» выбран для того, чтобы вектор напряженности Е был направлен в сторону убывания . Скалярная функция называется скалярным потенциалом электрического поля.

Если напряженность поля можно измерить экспериментально, то потенциал не имеет определенного числового значения и бессмысленно говорить об экспериментальном определении его значения. Потенциал определен с точностью до некоторого постоянного значения.

Для того, чтобы не было неоднозначности, используют процедуру нормировки потенциала. При решении пространственных задач за ноль принимают потенциал бесконечно удаленной точки. А при решении задач, связанных с изучением электрических полей вблизи поверхности Земли, за ноль принимают потенциал Земли.

Выражение работы через потенциал.

Если заряд перемещается между точками (1) и (2), то

(6.8)

Если сопоставить (6.8) и (6.3), то , откуда следует

(6.9)

Таким образом, с помощью (6.9) можно вычислить разность потенциалов между двумя точками поля.

Потенциал поля точечного заряда.

Будем нормировать потенциал на нуль в бесконечности. Считая, что в формуле (6.9) точка (2) находится в бесконечности, полагаем и получаем выражение для потенциала в точке (1):

. (6.10)

Воспользовавшись выражением для напряженности поля точечного заряда получим:

. (6.11)

Соотношение (6.11) определяет потенциал поля, создаваемого точечным зарядом.

Потенциал поля системы точечных зарядов.

Если имеется система из точечных зарядов, то потенциал поля в некоторой точке А равен

. (6.12)

В случае, когда заряд распределен непрерывно с объемной плотностью =, потенциал в некоторой точке (x, y, z) поля:

(6.13) - расстояние от точечного заряда находящегося в точке до точки где вычисляется потенциал.

Если заряд распределен по поверхности, то потенциал определяется формулой, (6.14)

где R –расстояние между элементом площадки DS и точкой, где

Вычисляется потенциал.

Бесконечность потенциала поля точечного заряда.

Из (6.14) следует, что при потенциал . Это связано с тем, что точечный заряд формально имеет бесконечную объемную плотность, поскольку его объем равен нулю. Именно бесконечная объемная плотность заряда и обуславливает обращение в бесконечность потенциала.

При непрерывном распределении заряда с конечной плотностью потенциал нигде не обращается в бесконечность, т. е. потенциал функция конечная.

Конечность потенциала при непрерывном распределении заряда с конечной плотностью.

При непрерывном распределении заряда с конечной плотностью потенциал нигде не обращается в бесконечность. В этом можно убедиться при вычислении потенциала по формуле (6.13). Причем точку (X,Y,Z) за начало координат (X=Y=Z=0) и будем вести расчет в сферической системе координат. Элемент объема в ней выражается формулой , где . Тогда [см. (6.13)]

.

Следовательно, Если Конечно, то и потенциал конечен, Что и требовалось доказать.

Непрерывность потенциала.

Производная от потенциала по декартовой координате дает соответствующую компоненту напряженности электрического поля. Ясно, что напряженность не может быть бесконечной, значит, производные по координатам от потенциала должны быть конечными. А это означает, что потенциал является непрерывной функцией. Таким образом, потенциал является непрерывной и конечной функцией с конечными производными по координатам. Эти условия важны при решении дифференциальных уравнений для .

Теорема Ирншоу.

Эта теорема утверждает, что не существует такой конфигурации неподвижных зарядов, которая была бы устойчивой, если нет других сил, кроме сил кулоновского взаимодействия между зарядами системы. Устойчивые конфигурации неподвижных зарядов могут существовать лишь тогда, когда кроме сил электрического взаимодействия между ними имеются некоторые посторонние силы, удерживающие заряды в положении равновесия.

Доказательство теоремы Ирншоу следует из теоремы Гаусса. Допустим, что равновесие устойчиво. Тогда при смещении любого из зарядов системы из его положения равновесия в любом направлении на него должна действовать сила, стремящаяся возвратить заряд в прежнее положение. А это означает, что напряженность поля, создаваемого вблизи каждого из покоящихся зарядов всеми другими зарядами, направлена вдоль радиусов, исходящих из точки нахождения этого заряда. Поток напряженности этого поля сквозь замкнутую поверхность вокруг заряда отличен от нуля, поскольку напряженность направлена вдоль радиусов в одном направлении (вблизи положительного заряда – к заряду, вблизи отрицательного – от заряда). По теореме Гаусса поток сквозь замкнутую поверхность создается зарядом, находящимся в ограничиваемом ею объеме. Это противоречит исходному предположению о том, что он создается зарядами, находящимися вне объема. Тем самым отвергается допущение об устойчивости конфигурации неподвижных зарядов, и теорема Ирншоу доказана.

Устойчивые конфигурации неподвижных зарядов могут существовать лишь тогда, когда кроме сил взаимодействия между ними имеются какие-то посторонние силы, удерживающие заряды в положениях равновесия. Устойчивые состояния движущихся зарядов возможны, как, например, движение двух разноименных зарядов по эллипсам вокруг центра масс (если, конечно, пренебречь излучением).